【教学论文】 基于“理解”观点的数学概念教学
在实际教学中,忽视“理解”的现象仍然相当普遍。比如,“快讲快练”被奉为法宝,还没有给学生呈现充分丰富的数学材料,老师就给出数学概念,更有甚者直接让学生通过死记硬背去学习数学概念。又比如,老师虽然重视理解,但方式单一,使得学生的理解只停留在表层阶段,而无法触及本质。虽然忽视“理解”有时也能取得一定的教学效果,但这样的效果只能是短期的,无法促进学生数学能力与思维的可持续发展。下面笔者谈谈基于“理解”观点的数学概念教学。
一、分析类别,确定“理解”的重点
教师首先要对概念的属性特征进行解读,明确概念的类别,方能在概念教学中做到有的放矢。根据概念的具体特征,数学概念一般被分为以下几类。
元素性概念:反映不同层次的数、式、方程、函数、图形等基本的数学元素,它们是数学学科的基本单元,数学中多数概念均属于此类。
操作性概念:对数学基本元素进行某种操作活动的概念,如对数式等进行加减乘除运算,对图形进行镜像、平移、旋转、位似等变换。
属性性概念:反映具体数学元素内部所具有的某种属性,如函数的周期性、单调性、奇偶性、连续性等。
关系性概念:反映两个或两个以上数学基本元素之间的某种联系,如整除、大小、相等、相反数、平行、垂直、全等、相似、互为相反数、等价、包含等。
度量性概念:比较两个事物某个方面的差异,并对该方面的差异进行量化,如长度、面积、体积等。
存瑞中学数学组 富景晨
2022年3月21日 16:29
ꄘ0
- 12-27
- 12-27
- 12-06
- 11-26
- 11-26
- 11-28
- 07-29
- 07-08
- 06-11
- 05-13